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Splitting of separatrices + chaotic zone

Consider an APM F' with a hyperbolic fixed point /{. Generically, the
separatrices of A split and create a chaotic zone (CZ) which extends up to the

“outermost” invariant curve.

15

1+t

05+

0+

05+

b

15 . N I I I I I 0. I I I
08 06 04 -02 0 02 04 06 08 0.1 -0.05 0 0.05 0.1

APMs — p.3/29



The dynamics within the chaotic zone...

... Is not ergodic : “rel. far” from the separatrices there are islands inside CZ.
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Ho(z,y) = Rara(z,y — %), = 0.1.
Experimental values: DY ~294%x1073 D ~208%x103
C 1

“Fish” interp. Hamiltonian: D ~2.47x1073 Dl ~1.85x1073
5-order interp. Hamiltonian: DX ~2.731x1072 D ~2.050x107?

a

Main idea: SM (and STM aprox.) + Interp. Ham.

2 Simo-V. Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones.
Physica D, 240(8), 2011.
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Dynamics within the homoclinic lobes

It looks like chaotic...

0.75
Wu .

05 |

0.25 |

e . . 0 L.m P el
0 0.2 0.4 0.6 0.8 1 0.5 0.75 1

...but, inside the homoclinic lobes, one finds tiny islands of stability: *°
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2Simo-Trescheyv, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Disc. Cont. Dyn.
Sys. B, 10(2,3), 2008 APMs — p.5/29



Goal of this work |

Instead of a single APM F’, we consider a one-parameter family of APMs  F..
— € — distance-to-integrable parameter

We are interested in the elliptic periodic orbits visiting homoclinic lobes
(EPL) of the lowest possible period (“dominant”) of F, for e << 1.

For analytical results: we assume “central symmetry” of £, and use the

separatrix map (SM) to... (concrete details later...)

e ... study the abundance of EPL (i.e. the relative measure of the set £/, of
e-parameters for which /. has EPL).

e ... describe the pattern of creation/destruction/bifurcation of these EPL in
terms of the parameter ¢.

e ... obtain an (explicit!) accurate estimate of the m(FE.).

— “maybe nice theory”... but, moreover,...
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Goal of this work I

... we want to compare the theoretical results with “real” situations

To this end, we perform accurate numerical computations  to obtain
estimates of m(FE,). In the numerical experiments we will consider as F
maps like the standard map (STM) and the HEnon map.

— Note that a “real” situation does not necessarily fit within “our” theoretical
framework (typically, one simplifies the model, uses a perturbative approach,...).
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Non-symmetric figure-eight

The figure-eight loops maybe non-symmetric!
Example of interest: resonant islands emanating from a fixed elliptic point.
Let F5 be a one-parameter family of APMs, Fs(Ey) = FEjy elliptic f.p.,
dynamics around the (q:m)-resonance, m > 5, (1 < ¢ < m, (g, m) = 1).
Spec(DFg)( ) {)\ A\ = exp(2mia), a = g¢/m + 6,6 € R.

0.8

“Outer splitting <> p~

“Inner splitting <> q”

Thm. Under generic assumptions: outer splitting > inner splitting. *°

2Sim6-V. Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps.
Nonlinearity 22, 5:1191-1245, 2009.
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Double separatrix map (figure-eight)

T T r + as,s + blog |g| (mod 1)
DSM : Yy — Y = Y + vssin 2wx )
s s sign(y) s

e Defined on a domain YV = U U D (fundamental domains around the

outer/inner separatrices).
® a, ; suitable “shifts” (reinjection to V).
e b =1/log(\), A dominant eigenvalue of H.

e y-variable rescaled: v; = landv_; = A_; /A, where Ay (resp. A_1)

Is the amplitude of the outer (resp. inner) splitting. AP — p10/29



A priori stable/unstable cases

Recall that we want to study EPL of F, € dist-to-integr. param., Fg integrable.
A priori unstable: F{ has a non-degenerated hyperbolic fixed point H s.t.
A(0) > 1. Then A(¢) = A(0) + O(€"), r > 0. The separatrices of H form

an integrable figure-eight.

A priori stable: F{y has a degenerated fixed point (e.g. we encounter a line of
fixed points for ¢ = 0). Then A\(¢) = 1+ O(€"), r > 0.

Remark: Islands emanating from a fixed elliptic point — a priori stable case.
All the examples we deal with fit within the a priori stable framework!
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A priori stable/unstable differences

e Size (width) of the homocilinic lobes.
(i) a priori unstable: A, = O(e"),r > 0
(i) a priori stable: A, = O(exp(—c/€")), with 7, ¢ > 0 ctants.

e Relation 'y <— SM .

(i) a priori unstable: a = O(—loge) , b=0(1),
(i) a priori stable: ~ a = O(1/e*") , b=0(1/€"),
Remarks:

e Case (i): a, b change “independently” (a changes with €).

e Case (ii): Both @ and b depend on €. But b'(a) ~ ¢" — Oase — 0 (i.e. a

changes faster with respect to small variations of €).
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Simo-Treschev result

F. —a priori unstable family of APMs
E., e < ey << 1-setof e-parameters for which £, has EPL

Thm. m(FE,), when ¢y — 0, remains greater than a constant KX > 0

independentofe. @

Comments:
e It does not provide any approximation of m(E,).

e It is enough to prove the existence of one EPL for some concrete a and b
values of the DSM. Then, using a specific scaling of the SM, one obtains

an EPL for values ¢ — 0.

e This scaling holds because b is indep. of € (a priori unstable)
scaling idea: €5 = €1 /AY" = a(ey) =~ a(e;) (mod 1)

2Simo6-Trescheyv, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Disc. Cont. Dyn.
Sys. B, 10(2,3), 2008 APMs — p.13/29
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Central symmetry

We assume that f, commutes with the central symmetry with respect to H..
This implies:

1. The figure-eight loops are symmetric.
2. The lowest possible period for an EPL is p = 4.

p2 p2 p3

Non-symmetric p = 3 EPL Symmetric p = 4 (p = 2) EPL
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DSM — “symmetric SM”

We can then identify both domains of definition of the DSM and consider a
simple model

T X r+a-+blo
Sl\/la,bi — ! — g‘yl‘

y U1 y + sin(2mx)

Motivation: For generic (non-strong) res. islands emanating from an elliptic
fixed point, the “lack of symmetry” is detected in a “second order”
approximation of the dynamics, which can be described by the Hamiltonian:

H(J, ) = %JQ + §J3 —(1+dJ)cos(y)), c=0O(51), d=0O(51 7).

Rec: If the multiplier of the elliptic pointis o = q/m + &, the m-resonant islands are located at
I. = O(6) and have a width O(§™/*). Then .J, 1) are adapted coordinates around the m-island.

Strong resonances have also been studied in some of the cited papers.

APMs — p.16/29



Main result

Assume F. a priori stable + central symmetry
= we use SM, ; to describe dynamics within the homoclinic lobes.

Idea: For a fixed b we look for the measure of the set of maps (depending on

a € [0, 1)) having EPL of period p = 2 (p = 4).

Thm. For afixed b, let ) ~ Aa denote the sum of the lengths of the intervals
Aa = (a_,ay) such that for a € Aa the separatrix map SM, , has a p = 2
EPL. Then,

1
lim Aa = — =~ 0.05066.2

b——+o00 27‘(‘2

Rec: a = a(e) and b = b(¢), but a changes quickly!

2 Simo6-V. Some remarks on the abundance of stable periodic orbits inside homoclinic lobes. Physica D, 2011 (to

appear).
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Transversality: EPL strips & (a, b)-curve of F,

b
A C
0 1 Ta

e b large enough (integrable limit, b = O(1/¢)).
e Each p = 2 EPL strip is related to different periodic P trajectory of F..

e [ defines a curve C which intersects transversally the EPL strips.
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Overlapping

Each periodic P trajectory of F, gives two a-intervals of EPL.
For P rel. small, elementary overlaps between these a-intervals occur.

Skipping these overlaps: lim Aa = ! (1/2 +log(3/2)) ~ 0.04587.

b—~+o0 ﬁ
Additional overlaps of tiny intervals related to large period are disregarded.

Numerical check for the SM:  z-axis: — log(b), y-axis: >  Aa.
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Standard map & p = 2 EPL

STM. : (z,y) = (Z,§ = (v + €¥,y + esin(z))

It commutes with the central symmetry (the figure-eight loops are symmetric).
To obtain EPL intervals we continue w.r.t. € periodic trajectories of the form:
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Standard map: e-intervals of EPL

We consider € € (0.7256, 1.18303) and we...

1. scan for initial conditions inside the homoclinic lobe (the central symmetry helpst),

2. refine them (Newton method) to obtain a periodic (tipically highly
hyperbolic!) trajectories,

3. continue them to obtain different EPL intervals.

— 223 different e-intervals. T'r(DT") is plotted as a function of €.
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Standard map: a-intervals of EPL

12

Using @ = a(e) ~ &2

log A(e€)

(we ignore O(1/¢) terms!) we obtain the a-intervals.
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a-interval | mr (Ey())
2.5,3.3] | 0.06619105
3.3,4.1] | 0.07210729
4.1,4.9] | 0.06797864
4.9,5.7] | 0.07159551
5.7,6.5] | 0.08013797
6.5,7.3] | 0.07146606
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Figure: x-axis: a (without mod 1), y-axis: €, each point corresponds to an EPL

a-interval.

Table: ) Aa for each fundamental interval.
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Hénon map

H,:(z,y) — (c(1 —2°) +2v +y, —x)

e We focus on the (1:4) resonant islands arising for ¢ > 1 (strong resonance!).

e Completely non-symmetric! : e.g. for c = 1.015 the inner splitting
O(10~°%) and the outer O(10~1).

0
02 \\\“«W%&*
T -0.64 =
L+ =
04+
06l = £ -0.66 |
W, {
08} i
4l / -0.68 }
1.2 F
14t -0.7
-16
/Nl(“\.w - -0.72 L L L L L
'1-80 02 04 06 08 1 12 14 16 1is 0.168 0.172 0.176 0.18 0.184

APMs — p.24/29



Hénon map: EPL type

Dominant EPL are p = 3 EPL (non-symmetric, do not visit all hom. lobes).
H_.isreversiblewrt R: y = —zxand Q1 : y = c(z* —1)/2 — .
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Example: P = 742 (we represent m = 93 iterates of Hél).
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Hénon map: c-intervals

e For c = 1.02, we scan for p.o. of the previous type

e We find 274896 p.o. with P < 1200

e We continue those with T'r(DH") < 10® (2367 initial conditions).
e Numerically observed: each i.c. gives at most two c-intervals.

e We find a total amount of 1989 different c-intervals of stability in
(Cm, car] = [1.0198,1.02].

e Sum of the lengths ~ 7.216 x 1072
e One pair of c-intervals overlap. Length of the overlapping ~ 7.82 x 10712,
e Length of the largest (shortest) c-interval obtained ~ .82 x 10~

(~ 2.1 x 10729,

— Qualitative agreement but not quantitative.
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tr

Hénon map: continuation pattern

General observed pattern: period-doubling bifurcations (non-symmetric!).

Tiny islands (the largest islands, of size 10™?, with shortest period P = 678).
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P = 742 periodic orbit (shown before).
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Final comments

Possible explanations for the “non-completely” quantitative agreement in the

examples:
® SM, ; only considers first harmonic of the oscillation between W* /W,
e Slope of the EPL strips for the range of parameters considered.
e Approximated relation of a with the parameter of the family (STM example).
e Non-symmetric case: proper model DSM.

e Specific type of EPL considered in the HEnon map example.
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Moltes gr acies per la vostre atenci 0!
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