Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Julian Barbour, Oxford.
Títol: Dynamics of Pure Shape (*).
A càrrec de: Massimiliano Berti, Sissa, Trieste.
Títol: A functional analysis approach to Arnold diffusion.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: James Stirling, Dept. Matemàtica Aplicada I, UPC.
Títol: Painting pictures of turbulence: Chaotic advection, transport and bifurcation in an estaurine flow (*).
A càrrec de: Alain Chenciner, Astronomie et Systèmes Dynamiques, IMCCE, BDL Paris, et Département de Mathématiques, Univ. Paris VII.
Títol: Perverse solutions of the N-body problem.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Carles Simó, Dept. de Matemàtica Aplicada i Anàlisi, UB.
Títol: Bifurcacions i atractors estranys en el model de clima Lorenz-84 amb forçament estacional (*).
Resum:
A low dimensional model of general circulation of the atmosphere is
investigated. The differential equations are subject to periodic forcing,
where the period is one year. A three dimensional Poincaré mapping
$\mathscr{P}$ depends on three control parameters $F,$ $G,$ and $\eps$, the
latter being the relative amplitude of the oscillating part of the forcing.
This paper provides a coherent inventory of the phenomenology of
$\mathscr{P}_{F,G,\eps}$. For $\eps$ small, a Hopf-saddle-node bifurcation
$\mathcal{HSN}$ of fixed points and quasi-periodic Hopf bifurcations of
invariant circles occur, persisting from the autonomous case $\eps=0$.
For $\eps=0.5$, the above bifurcations have disappeared. Different
types ofstrange attractors are found in four regions (chaotic ranges) in $\{F,G\}$
and the related routes to chaos are discussed.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Carles Simó, Dept. de Matemàtica Aplicada i Anàlisi, UB.
Títol: El pèndul forçat paramètricament: Un exemple paradigmàtic en 1+1/2 graus de llibertat (*).
Resum:
his paper is concerned with the global coherent (i.e., non-chaotic) dynamics of the parametrically forced pendulum. The system is studied in a one and one half degree of freedom Hamiltonian setting with two parameters, where a spatio-temporal symmetry is taken into account. Our explorations are restricted to sufficiently large regions of coherent dynamics in phase space and parameter plane. At any given parameter point we restrict to a bounded subset of phase space, using KAM theory to exclude an infinitely large region with trivial dynamics.
In the absence of forcing the system is integrable. Analytical and numerical methods are used to study the dynamics in a parameter region away from integrability, where the results of a perturbation analysis of the nearly integrable case are used as a starting point. We organize the dynamics by dividing the parameter plane in fundamental domains, guided by the linearized system at the upper and lower equilibria.
Away from integrability some features of the nearly integrable coherent dynamics persist, while new bifurcations arise. On the other hand, the chaotic region increases.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Àngel Jorba, Dept. de Matemàtica Aplicada i Anàlisi, UB.
Títol: A software package for the numerical integration of ODE by means of high-order Taylor methods.
In this talk we will revisit the Taylor method for the numerical integration of initial value problems of Ordinary Differential Equations (ODEs). The main issue is to present a computer program that, given a set of ODEs, produces the corresponding Taylor numerical integrator. The step size control adaptively selects both order and step size to achieve a prescribed error, and trying to minimize the global number of operations. The package provides support for several extended precision arithmetics, including user-defined types.
We will also discuss the performance of the resulting integrator in some examples. As it can select the order of the approximation used, it has a very good behaviour for high accuracy computations. In fact, if we are interested in a very accurate computation in extended precision arithmetic, it becomes the best choice by far. The main drawback is that the Taylor method is an explicit method, so it has all the limitations of these kind of schemes. For instance, it is not suitable for stiff systems.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Rafael Ramírez Inostroza, Dept. d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili.
Títol: On the solution of the inverse problem in celestial mechanic(*).
A càrrec de: Carles Simó, Dept. de Matemàtica Aplicada i Anàlisi, UB.
Títol: A formal approximation of the splitting of separatrices in the classical Arnold's example of diffusion with two equal parameters(**).
(*)
We give a completely solution of the problem of the construction of the
field of force capable of generating the given orbits.
We propose a generalization of the Dainelli, Bertrand and Joukovski
problems. A new approach to solve the Suslov problem is obtained.
(**) Treball conjunt amb Claudia Valls
We consider the classical Arnold's example of diffusion with two equal
parameters. Such system has two-dimensional partially hyperbolic invariant
tori. We mainly focus on the tori whose ratio of frequencies is the golden
mean. We present formal approximations of the three-dimensional invariant
manifolds associated to this torus and numerical globalization of these
manifolds. This allows to obtain the splitting (of separatrices) vector
and to compute its Fourier components. It is apparent that the Melnikov
vector provides the dominant order of the splitting provided the
contribution of each harmonic is computed after a suitable number of
averaging steps, depending on the harmonic. We carry out the first order
analysis of the splitting based on that approach, mainly looking for
bifurcations of the zero level curves of the components of the splitting
vector and of the homoclinic points.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: James Stirling, Dept. Matemàtica I, UPC.
Títol: Chaotic advection, transport and bifurcation in a Hamiltonian model of pollution dynamics in an estuarine flow.(*).
A càrrec de: Carles Simó, Dept. de Matemàtica Aplicada i Anàlisi, UB.
Títol: A formal approximation of the splitting of separatrices in the
classical Arnold's example of diffusion with two equal parameters II.
Technical details.(**).
(*)
We describe the flow in an estuary using a 3 dimensional time periodic
vector field, in which the dynamics in the vertical plane can be separated
from that in the horizontal. We then reduce the dynamics in the vertical
plane to the study of 2d Hamiltonian Poincare map and make predictions as
to the time taken for pollution to leave the estuary and the regions of
different mixing and hence the presence of patchiness within the clouds
of pollution. We finish with suggestions for optimal strategies for the
release of pollution into such flows.
(**) Treball conjunt amb Claudia Valls.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Masayoshi Sekiguchi, Kisarazu Natl. Col. of Technology, Japan and Dept. Matemàtica Aplicada i Anàlisi, UB.
Títol: On the Symmetric Collinear Four Body Problem.
The symmetric collinear four-body problem is a special case of the general Newtonian four-body problem in which the bodies are distributed symmetrically about the center of masses on a fixed common line. This problem represents a special class of N-body systems with two degrees of freedom.
Both analytical and numerical studies of SC4BP have been conducted in the case of negative energy. Especially, symbol sequences are directly obtained by numerical simulations.
It is found that some kinds of symbol words are unrealizable, contrary to the existence of other kinds of periodic sequences. The period coincides with the "winding number" of the invariant manifold associated with the critical point on the total collision manifold.
Moreover, escape criteria are constructed analytically. The distribution of initial points on the surface of section for escape is numerically confirmed.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Santiago Ibañez, Depto. de Matemáticas, Univ. de Oviedo.
Títol: Avances y perspectivas en el despliegue de la singularidad nilpotente de codimensión tres.
A càrrec de: Rafael de la Llave, Dept. of Math. Univ. of Texas at Austin.
Títol: Rigidez diferenciable de sistemas Anosov conformes.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Freddy Dumortier, Limburgs Universitair Centrum.
Títol: Bifurcations in polynomial Lienard equation.
A càrrec de: Lorenzo Díaz, Dept. Matemáticas, PUC, Rio de Janeiro.
Títol: Conjuntos transitivos minimales de difeomorfismos C1-genéricos.
Lloc: Aula 5, Facultat de Matemàtiques, UB.
A càrrec de: Bernard Malgrange, Univ. de Grenoble I, Institut Fourier.
Títol: Non-linear differential Galois theory.
A càrrec de: Christian Henriksen, Univ. Paul Sabatier, Toulouse.
Títol: A theorem by Naishul, after Gambaudo, Le Calvez and Pecou.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Serguey Gonchenko, Dept. Diff. Eq., Univ. Nizhny Novgorod.
Títol: Diffeomorphisms with homoclinic tangencies and generalized Hénon maps.
A càrrec de: Ugo Locatelli, Univ. Roma II Tor Vergata.
Títol: Construction of invariant tori in planetary three-body systems.
Lloc: Aula 1, Facultat de Matemàtiques, UB.
A càrrec de: Richard Montgomery, Dept of Math, U. of Calif. at Santa Cruz.
Títol: Infinitely many syzygies.
A càrrec de: Teresa Stuchi, Inst. de Fisica, U. Fed. Rio de Janeiro.
Títol: Two possible integrable cases of the anisotropic Stormer problem.
Lloc: Aula 5, Facultat de Matemàtiques, UB.
A càrrec de: Henk Broer, Dept. of Mathematics and Comp. Sci., U. of Groningen.
Títol: A global version of the KAM theorem: monodromy for nearly integrable systems.
A càrrec de: Ernest Fontich, Dept. de Matemàtica Aplicada i Anàlisi, UB.
Títol: Invariant manifolds of some families of maps close to a rotation.
Lloc: Aula 5, Facultat de Matemàtiques, UB.
A càrrec de: L.M. Lerman, Univ. de Nizhny Novgorod.
Títol: Dynamics of a singularly perturbed Hamiltonian system near its slow elliptic manifold.
A càrrec de: A. Lopez-Castillo, Centro Universitario FIEO, Brasil.
Títol: Estudios Clásicos y Semiclásicos de la Molécula de Hidrógeno.
Lloc: Aula 5, Facultat de Matemàtiques, UB.
A càrrec de: Martijn Van Noort, Dept. of Math. and Comp.Sci. U.of Groningen.
Títol: The parametrically forced pendulum: a case study in 1½ degree of freedom.
Lloc: Aula 5, Facultat de Matemàtiques, UB.
A càrrec de: Alexander Gofen, Software Developer Smith-Kettlewell Eye Research Institute, San Francisco.
Títol: ODEs Redefine Elementary Functions and Vice Versa.
Lloc: Aula 5, Facultat de Matemàtiques, UB.
A càrrec de: Arturo Olvera, IIMAS, UNAM, Mexico.
Títol: Estudio de puntos elipticos en aplicaciones de cuatro dimensiones.
A càrrec de: Dan J. Scheeres, Dept. of Aerospace Engineering, U. of Michigan.
Títol: Orbit Determination and Control of a Spacecraft in a Libration Point Orbit.
Lloc: Aula 5, Facultat de Matemàtiques, UB.
A càrrec de: Dmitry Treschev, Department of Math. and Mech., Moscow State Univ. (Lomonosov University).
Títol: Travelling waves in Fermi-Pasta-Ulam lattice.
A càrrec de: Carles Simó, Dept. Mat. Aplicada i Anàlisi, UB.
Títol: Random versus deterministic exponents in a rich family of diffeomorphisms.
Lloc: Aula 5, Facultat de Matemàtiques, UB.
A càrrec de: George Haller, Department of Mechanical Engineering, MIT.
Títol: Invariant Manifolds in Fluid Mixing.
A càrrec de: Amadeu Delshams, Dept. Matemàtica Aplicada I, UPC.
Títol: Overcoming the Large Gap Problem in Arnold Diffusion.
Lloc: Aula 5, Facultat de Matemàtiques, UB.
A càrrec de: Alain Chenciner, IMCCE Obervatoire de Paris et Dept. de Math. Univer. de Paris VII.
Títol: The absence of collisions for a minimizer of the fixed-ends N-body problem: Idea of the proof and some consequences.
A càrrec de: Jordi Villanueva, Dept. Matemàtica Aplicada I, UPC.
Títol: Cirurgia Quantitativa Aplicada a la Família Estàndard d'Arnold (Estimacions Asimptòtiques dels Anells d'Herman).
Last updated: Wed Jul 17 15:41:23 MEST 2002